Boundary element monotone iteration scheme for semilinear elliptic partial differential equations
نویسندگان
چکیده
The monotone iteration scheme is a constructive method for solving a wide class of semilinear elliptic boundary value problems. With the availability of a supersolution and a subsolution, the iterates converge monotonically to one or two solutions of the nonlinear PDE. However, the rates of such monotone convergence cannot be determined in general. In addition, when the monotone iteration scheme is implemented numerically through the boundary element method, error estimates have not been analyzed in earlier studies. In this paper, we formulate a working assumption to obtain an exponentially fast rate of convergence. This allows a margin δ for the numerical implementation of boundary elements within the range of monotone convergence. We then interrelate several approximate solutions, and use the Aubin-Nitsche lemma and the triangle inequalities to derive error estimates for the Galerkin boundaryelement iterates with respect to the Hr(Ω), 0 ≤ r ≤ 2, Sobolev space norms. Such estimates are of optimal order. Furthermore, as a peculiarity, we show that for the nonlinearities that are of separable type, “higher than optimal order” error estimates can be obtained with respect to the mesh parameter h. Several examples of semilinear elliptic partial differential equations featuring different situations of existence/nonexistence, uniqueness/multiplicity and stability are discussed, computed, and the graphics of their numerical solutions are illustrated.
منابع مشابه
Boundary Element Monotone Iteration Scheme for Semilinear Elliptic Partial Differential Equations, Part Ii: Quasimonotone Iteration for Coupled 2× 2 Systems
Numerical solutions of 2× 2 semilinear systems of elliptic boundary value problems, whose nonlinearities are of quasimonotone nondecreasing, quasimonotone nonincreasing, or mixed quasimonotone types, are computed. At each step of the (quasi) monotone iteration, the solution is represented by a simple-layer potential plus a domain integral; the simple-layer density is then discretized by boundar...
متن کاملBoundary element monotone iteration scheme for semilinear elliptic partial differential equations, Part II: Quasimonotone iteration for coupled systems
Numerical solutions of 2× 2 semilinear systems of elliptic boundary value problems, whose nonlinearities are of quasimonotone nondecreasing, quasimonotone nonincreasing, or mixed quasimonotone types, are computed. At each step of the (quasi) monotone iteration, the solution is represented by a simple-layer potential plus a domain integral; the simple-layer density is then discretized by boundar...
متن کاملPeriodic Boundary Value Problems for Semilinear Fractional Differential Equations
We study the periodic boundary value problem for semilinear fractional differential equations in an ordered Banach space. The method of upper and lower solutions is then extended. The results on the existence of minimal and maximal mild solutions are obtained by using the characteristics of positive operators semigroup and the monotone iterative scheme. The results are illustrated by means of a...
متن کاملAlgorithms and Visualization for solutions of nonlinear Elliptic equations
In this paper, we compute and visualize solutions of several major types of semilinear elliptic boundary value problems with a homogeneous Dirichlet boundary condition in 2D. We present the mountain–pass algorithm (MPA), the scaling iterative algorithm (SIA), the monotone iteration and the direct iteration algorithms (MIA and DIA). Semilinear elliptic equations are well known to be rich in thei...
متن کاملA Posteriori Error Estimates for Semilinear Boundary Control Problems
In this paper we study the finite element approximation for boundary control problems governed by semilinear elliptic equations. Optimal control problems are very important model in science and engineering numerical simulation. They have various physical backgrounds in many practical applications. Finite element approximation of optimal control problems plays a very important role in the numeri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 65 شماره
صفحات -
تاریخ انتشار 1996